Logikrätsel - Mathematik: Primfaktoren bei Jahreszahlen ermitteln

Teaser: Logikrätsel - Mathemetik: Wer seine Kenntnisse und Fähigkeiten in Mathematik schulen will, kann dies gut mit kleinen Logikrätsel machen. In diesem Fun-Artikel stellen wir eine Methode vor, wie man aus großen Jahreszahlen die Primfaktoren ermittelt. So können Sie mit Spaß mehr über Mathematik lernen.

Wer seine mathematischen Kenntnisse und Fertigkeiten schulen will, kann dies auf spielerische Weise tun. Hierzu braucht man manchmal einfach nur ein paar pfiffige Ideen, die dazu anregen ein wenig mit Formeln und Zahlen herumzuspielen. Denn auch in der Mathematik gilt, dass nur viel Übung den Meister macht. Außerdem soll es auch Spaß machen, denn ohne Begeisterung gibt es kaum einen Grund etwas zu lernen.

In diesem Fun-Artikel will ich Ihnen eine Spielerei mit Jahreszahlen vorstellen. Dabei habe ich mir selbst die Aufgabe gesetzt die Jahreszahl 2009 in die Primfaktoren zu zerlegen und gebe dabei an, wie ich schrittweise dabei vorgehe. So können Sie die Rechenschritte nachvollziehen und später auch selbst versuchen, so eine Primfaktorenzerlegung auf andere Beispiele anzuwenden.

Mit Jahreszahlen lassen sich allerhand mathematische Kenntnisse gewinnen. Anhand der Jahreszahlen 2009 und 2011 lässt sich beispielsweise gut zeigen, wie man eine Zahl in Primfaktoren zerlegen oder selbst als Primzahl erkennen kann. Die Grundlagen zu dieser Methode hat der Grieche Eratosthenes schon vor etwa 2200 Jahren gelegt.

1. Schritt: Wurzelwert der Zahl durch einfache Quadrate eingrenzen:

102 = 100
202 = 400
302 = 900
402 = 1600
502 = 2500

2009 liegt zwischen 1600 und 2500, also müssen wir nur die Teilbarkeit durch Primzahlen bis unter 50 prüfen.

2. Schritt: Das Spiel mit Primzahlen

Bei geraden Zahlen (z.B. 2008) beginnen wir mit der Teilung der Zahl durch 2. Wir teilen so lange durch Primzahlen, bis wir als Resultat eine Primzahl erhalten, die sich definitionsgemäß nur noch durch sich selbst teilen lässt.

Bei Ungeraden, also unserer 2009, prüfen wir als erstes die Teilbarkeit durch 3. Die Quersumme von 2009 ist 11. Daher ist 2009 nicht durch 3 teilbar. Durch die Zahl 5 offensichtlich auch nicht. Wir gehen also weiter zur Zahl 7: 2009 / 7 = 287. Wir teilen durch 7 so lange, wie es geht: 287 / 7 = 41. Da 41 eine Primzahl ist haben wir die Zerlegung schon beendet.

In der Praxis bewährt sich folgende Darstellung:

2009

287

41

1

7

7

41

Die korrekte Darstellung der Primfaktorzerlegung von 2009 lautet demnach:

Faktor (2009) = 72 * 41

Ist die zu untersuchende Zahl selbst eine Primzahl, werden wir ihre Teilbarkeit durch alle Primzahlen bis unter deren Wurzelwert prüfen müssen. 2011 lässt sich beispielsweise durch keine der folgenden Primzahlen teilen: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 (bitte selber nachprüfen – von Hand oder mit dem Taschenrechner!) und ist deshalb selbst eine Primzahl!

Begründung: Eine Zahl, die nicht selbst Primzahl ist, muss das Produkt mindestens zweier Primzahlen sein, entweder das Quadrat einer Primzahl wie 72 = 49 oder das Produkt zweier unterschiedlicher Primzahlen, wovon die eine kleiner, die andere größer sein muss als der Wurzelwert der Zahl, z.B. 3 * 7 = 21; √(21) ≅ 4.6.

Deshalb genügt ein Test mit allen Primzahlen, die kleiner sind als der Wurzelwert der Zahl. Wieviele Primzahlen auch immer eine Zahl zusammensetzen. Höchstens eine von ihnen kann größer sein als ihr Wurzelwert, und diese wird durch Division durch eine kleinere Primzahl bereits aufgespürt.

Zerlegen wir zur Übung noch die Zahlen 2008 und 2010 (ihre Wurzelwerte liegen ebenfalls zwischen 40 und 50)

2008

1004

502

251

1

2

2

2

251

2010

1005

335

67

1

2

3

5

67

2008: 251 ist schnell getestet: 162 = 256 ist die nächste Quadratzahl; nach der 2 müssen nur noch die 3, 7, 11 und 13 getestet werden – 251 ist Primzahl.

Faktor (2008) = 23 * 251

Faktor (2010) = 2 * 3 * 5 * 67

Zum Abschluss noch ein weiteres kleines Spiel mit der Jahreszahl 2009. Diese ergibt in der Quersumme (2 + 0 + 0 + 9 = 11) die Zahl 11 und die Zahl 11 ist eine Freundschaftszahl. Deshalb noch ein kleines Gedicht in elf Worten mit guten Wünschen für ein erfolgreiches Jahr 2009: Sei du andern Freund und gewinne Freunde!

Treue in guten und schlechten Zeiten rettet durch Stürme hindurch: Freundschaft!

Viel Spaß beim Spielen mit Primzahlen!

03.07.2013 © seit 01.2009 Felix Sachs  
Kommentar schreiben